
for physics students for VF (Vertiefungsfächer) 

- “Bio/Medical Physics“ 

- “Nanostructures“ 

- “Condensed Matter” 

for NanoScience students

Advanced Topics in Condensed Matter (ATCOMA):

Lecture 3

Last week:

- Introduction and some general concepts

- Elementary scattering process

Today:

- Scattering from crystals

Later:

- Scattering from disordered systems / liquids

- Scattering from surfaces and interfaces

- General scattering theory: Correlations in space and time

- Miscellaneous topics, applications, and examples
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Lattice Base Crystal
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1) Bragg‘s law

Different ways to “discuss“ Bragg peaks

𝑛λ = 2𝑑ℎ𝑘𝑙 sin 𝜃

3) Reciprocal space

positions of the 

diffraction maxima 

at reciprocal space 

vectors

Ԧ𝑞 = Ԧ𝐺ℎ𝑘𝑙

2) Scattering phase

constructive 

interference 

𝑒𝑖𝑞𝑑ℎ𝑘𝑙 = 1

𝑞𝑑ℎ𝑘𝑙 = 2𝜋𝑛

4𝜋

λ
sin 𝜃 𝑑ℎ𝑘𝑙 = 2𝜋𝑛

𝑛λ = 2𝑑ℎ𝑘𝑙 sin 𝜃

hkl = Miller indices
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General approach

... consider scattering from atoms 𝑓(𝑞)

... then sum over all atoms in unit cell at positions Ԧ𝑟𝛼

... then sum over all unit cells at positions 𝑅𝑛

... 
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The scattering amplitude of a crystal is given by the summation of the 

scattered waves of all individual atoms

with the positions

Structure factor F

Gives information about 

position of atoms in the 

unit cell 𝑓𝛼 at Ԧ𝑟𝛼

Position of the unit 

cell (𝑛) within the 

crystal (lattice)
Thus

Geometric series σ𝒙𝒏

Gives information about 

the lattice parameters 

Ԧ𝑎1, Ԧ𝑎2, Ԧ𝑎3, 𝑁1, 𝑁1, 𝑁3

Position of the atom 

(𝛼) within the unit 

cell (basis)

𝐸1 = 𝐸0𝑟𝑒
𝑒𝑖(𝑘∙𝑅−𝜔𝑡)

𝑅
෍

𝑛,𝛼

𝑓𝛼𝑒
𝑖𝑞∙𝑅𝑛𝛼

𝑅𝑛𝛼 = Ԧ𝑟𝛼 + 𝑅𝑛

𝐸1 = 𝐸0𝑟𝑒
𝑒𝑖(𝑘∙𝑅−𝜔𝑡)

𝑅
෍

𝛼

𝑈𝐶

𝑓𝛼𝑒
𝑖𝑞∙ Ԧ𝑟𝛼 ෍

𝑛1

𝑁1

𝑒𝑖𝑞∙𝑎1𝑛1෍

𝑛2

𝑁2

𝑒𝑖𝑞∙𝑎2𝑛2෍

𝑛3

𝑁3

𝑒𝑖𝑞∙𝑎3𝑛3

peak 

intensity 

→ basis

peak 

position 

→ lattice
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The total scattering intensity 𝐼 = 𝐸1𝐸2
∗ is given by

Which yields, after evaluation of the geometric series, 

the interference functions

𝐼 = 𝐼0
𝑟𝑒
2

𝑅2
𝐹 Ԧ𝑞 2 𝐿𝑁1( Ԧ𝑞 ∙ Ԧ𝑎1)𝐿𝑁2( Ԧ𝑞 ∙ Ԧ𝑎2)𝐿𝑁3( Ԧ𝑞 ∙ Ԧ𝑎3)

𝐿𝑁 𝑞𝑎 ≔
𝑒𝑖𝑞𝑎𝑁 − 1

𝑒𝑖𝑞𝑎 − 1

2

=
𝑠𝑖𝑛2(𝑞𝑎𝑁/2)

𝑠𝑖𝑛2(𝑞𝑎/2)
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Properties of interference function

For 𝑁՜∞, 𝐿𝑁 𝑞𝑎 → 𝛿-function 

with maxima at (Laue equations)

i.e.           Ԧ𝑞 = Ԧ𝐺ℎ𝑘𝑙

𝐿𝑁 𝑥

𝑁2
=

𝑠𝑖𝑛2(𝑁𝑥)

𝑁2𝑠𝑖𝑛2(𝑥)

𝐿𝑚𝑎𝑥 ~ 𝑁2

∆𝐿𝑁 𝑞𝑎 ~ 𝑁−1

𝐿𝑁׬ 𝑞𝑎 𝑑𝑞 ~ 𝑁

Ԧ𝑞 ∙ Ԧ𝑎1 = 2𝜋ℎ

Ԧ𝑞 ∙ Ԧ𝑎2 = 2𝜋𝑘

Ԧ𝑞 ∙ Ԧ𝑎3 = 2𝜋𝑙

Question: Isn‘t 𝐿𝑁 𝑞𝑎 → 𝛿-function unphysical? 
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Example: sodium chloride

Structure factor fcc

𝐹 = 0 for mixed odd and even ℎ, 𝑘, 𝑙
Structure factor basis

Additional modulation

Source: https://de.wikipedia.org/wiki/Natriumchlorid

face-centered cubic (fcc) with 2-atom basis

Ԧ𝑟𝑁𝑎 = 0,0,0 × 1
2
𝑎0

Ԧ𝑟𝐶𝑙 = 1,0,0 × 1
2𝑎0

calculation of structure factor

𝐹𝑁𝑎𝐶𝑙 = 𝑓𝑁𝑎 1 + 𝑒𝑖𝜋(ℎ+𝑘) + 𝑒𝑖𝜋(ℎ+𝑙) + 𝑒𝑖𝜋(𝑘+𝑙) + 𝑓𝐶𝑙 𝑒
𝑖𝜋(ℎ+𝑘+𝑙) + 𝑒𝑖𝜋𝑙 + 𝑒𝑖𝜋𝑘 + 𝑒𝑖𝜋ℎ

= 1 + 𝑒𝑖𝜋(ℎ+𝑘) + 𝑒𝑖𝜋(ℎ+𝑙) ++𝑒𝑖𝜋(𝑘+𝑙) × 𝑓𝑁𝑎 + 𝑓𝐶𝑙𝑒
𝑖𝜋(ℎ+𝑘+𝑙)

resulting structure factor

𝐹𝑁𝑎𝐶𝑙 = 4 𝑓𝑁𝑎 + 𝑓𝐶𝑙 for ℎ, 𝑘, 𝑙 even

= 4 𝑓𝑁𝑎 − 𝑓𝐶𝑙 for ℎ, 𝑘, 𝑙 odd

= 0 for ℎ, 𝑘, 𝑙 mixed

3.2 Practical examples and contrast considerations
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Example: sodium chloride

resulting structure factor

𝐹𝑁𝑎𝐶𝑙 = 4 𝑓𝑁𝑎 + 𝑓𝐶𝑙 for ℎ, 𝑘, 𝑙 even

= 4 𝑓𝑁𝑎 − 𝑓𝐶𝑙 for ℎ, 𝑘, 𝑙 odd

= 0 for ℎ, 𝑘, 𝑙 mixed

Source: https://de.wikipedia.org/wiki/Natriumchlorid

3.2 Practical examples and contrast considerations
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Example: allowed Bragg peaks for cubic symmetry: sc vs bcc vs fcc vs diamond

Source: H. Zabel

3.2 Practical examples and contrast considerations



3.2 Practical examples and contrast considerations



3.2 Practical examples and contrast considerations



14

Example: sodium chloride

Source: https://de.wikipedia.org/wiki/Natriumchlorid

- Crystallography now established, of course

- Important and indispensable to date

- More and more complex structures,

including macromolecular structures

- Several Nobel prizes 

in physics / chemistry / medicine

- Now some more examples

3.2 Practical examples and contrast considerations
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Example: FeCo alloy with order-disorder transition

3.2 Practical examples and contrast considerations
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Example: FeCo alloy with order-disorder transition

𝑇𝐶 ≈ 900 − 1000℃

Co

Fe Co / Fe

𝑇 < 𝑇𝐶 𝑇 > 𝑇𝐶

CsCl – structure, i.e. SC 

with 2-atomic basis (𝑎 ≈ 2.84 Å)

BCC with statistical occupation

of the 1-atomic basis (𝑎 ≈ 2.84 Å)

3.2 Practical examples and contrast considerations
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Example: FeCo alloy with order-disorder transition

Structure factor CsCl

see BM KoMa

3.2 Practical examples and contrast considerations
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Example: FeCo alloy with order-disorder transition

CsCl – structure, i.e. SC 

with 2-atomic basis (𝑎 ≈ 2.84 Å)
BCC with statistical occupation

of the 1-atomic basis (𝑎 ≈ 2.84 Å)

Structure factor

Krimmel et al., Phys. Rev. Lett. 78 (1997) 3880

3.2 Practical examples and contrast considerations



19
Source: Simulations by Ivan Zaluzhnyy

Note correction factors (not all considered)

- atomic form factor f(q) for X-rays

- multiplicity of the peaks

- polarization correction for X-ray (Lorentz factor) 

- Debye-Waller factors

Example: FeCo alloy with order-disorder transition Neutron scattering

100 110 111 200 210 211 220 300 310 311   222  320

3.2 Practical examples and contrast considerations
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Source: Simulations by Ivan Zaluzhnyy

Example: FeCo alloy with order-disorder transition X-ray scattering

Note correction factors (not all considered)

- atomic form factor f(q) for X-rays

- multiplicity of the peaks

- polarization correction for X-ray (Lorentz factor) 

- Debye-Waller factors

Note 

(27 + 26)2 = 2809

(27  - 26)2 = 1

100 110 111 200 210 211 220 300 310 311   222  320

3.2 Practical examples and contrast considerations
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Source: Simulations by Ivan Zaluzhnyy

Example: FeCo alloy with order-disorder transition X-ray scattering

Note correction factors (not all considered)

- atomic form factor f(q) for X-rays

- multiplicity of the peaks

- polarization correction for X-ray (Lorentz factor) 

- Debye-Waller factors

log

scale!

100 110 111 200 210 211 220 300 310 311   222  320

3.2 Practical examples and contrast considerations
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3.3 Outlook: Some more advanced topics
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Remarks on the “limits of simple Fourier transforms“

Authier A. Dynamical Theory of X-ray Diffraction (IUCr Crystallographic Symposia)

Kovalchuk & Kohn X-ray standing waves - a new method of studying the structure of crystals, Sov. Phys. Usp. (1986)

Vartanyants & Kovalchuk Theory and applications of X-Ray standing waves in real crystals , Rep. Prog. Phys. (2001)

The “equivalence“ 

of the scattering signal 

with a Fourier transform (FT)

is based on the assumption that 

each photon or neutron 

is scattered at most once 

(“kinematic approximation“).

If multiple scattering 

has to be taken into account 

(so-called “dynamical theory“),

e.g., for “perfect“ crystals,

the signal is no longer a direct FT.
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Remarks on the “phase problem“ in structure determination

What is the phase problem ? 

We measure only intensities, not amplitudes and phases,

so the phase information is lost and no direct Fourier backtransform

of the data is possible to solve the structure directly.

Possible strategies to solve the “phase problem“ 

(apart from “guessing“, which works fairly well)

- anomalous scattering (X-rays)

- isotopic substitution (neutrons)

- Patterson map

- ... 
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3.3 Outlook: Some more advanced topics
Preparatory exercise (see also https://en.wikipedia.org/wiki/Structure_factor):

Calculation of the structure factor of diamond;

This is an fcc lattice with a 2-atomic basis
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3.3 Outlook: Some more advanced topics

Question:

Why are some forbidden peaks not completely absent in X-ray diffraction ?

e.g. in diamond, the (222) is supposed to be forbidden, but is not strictly 0 !

A possible answer:

Non-spherical symmetry of C (in particular in tetragonal environment);

Using X-ray diffraction, this can actually be used to determine the non-spherical 

contributions to the charge density distribution around the C atoms 

(expressed via “Kubic Harmonics” (KH) by von der Lage & Bethe 1947)

Note that the 2 inequivalent atoms A and B with different relative orientation of 

the orbitals (bonds)

Dawson, B. 1967 Proc. Roy. Soc. A 298, 264, The covalent bond in diamond
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3.3 Outlook: Some more advanced topics

Question:

Why are some forbidden peaks not completely absent in neutron diffraction ?

e.g. the (666) in Si is supposed to be forbidden, but is not strictly 0 !

A possible answer:

Non-spherical symmetry of Si (in particular in tetragonal environment) leads to 

an anharmonic potential for the vibration of the atoms; 

this anharmonicity, in particular at high T and higher order reflections, e.g. (666),

leads to the “imperfect cancellation of scattering amplitudes” from the two 

inequivalent atoms, since their relative distance may no longer be ¼ (111),      

i.e. ¼ along the main diagonal of the cubic unit cell. Note that in the diamond 

structure, there are 8 “holes” towards which the atoms can “swing” more easily.

Thus, “forbidden reflections” may be observed.

Note that for neutron diffraction, this has nothing to do with scattering from the 

(anisotropy of the) electron cloud, since the neutrons scatter from “delta-like” 

nuclei, so it is the positions of the nuclei, which matters (and at high T these are 

not in the symmetrical positions for an anharmonic potential).

Thus, the forbidden reflections can actually be used to determine the (non-

spherical) contributions to the anharmonicity of the atomic potentials.

Dawson, B., and Willis, B.T.M., 1967 Proc. Roy. Soc. A 298, 307, Anharmonic vibration and forbidden reflexions in Si and Ge 
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3.3 Outlook: Some more advanced topics

Question:

Why are some forbidden peaks not completely absent ?

More literature on this subject:

Dawson, B. 1967 Proc. Roy. Soc.A 298, 264, 

The covalent bond in diamond

Dawson, B., and Willis, B.T.M., 1967 Proc. Roy. Soc. A 298, 307, 

Anharmonic vibration and forbidden reflexions in Silicon and Germanium

Dawson, B., Hurley, A.C., Maslen, V.W. 1967 Proc. Roy. Soc. A 298, 289, 

Anharmonic vibration in fluorite structures

Dawson, B. 1967 Proc. Roy. Soc.A 298, 255, 

A general structure factor formalism for interpreting accurate x-ray and neutron diffraction data

High-resolution characterization of the forbidden Si 200 and Si 222 reflections

Peter Zaumseil J. Appl. Cryst. (2015) 48, 528 

Klaus Eichhorn, Armin H. Kirfel and Karl F. Fischer, Z. Naturforsch. 43a, 391 (1988)

Anisotropic Anomalous Dispersion in Cuprite, Cu20

David H. Templeton and Lieselotte K. Templeton, Acta Cryst. (1986). A42, 478

X-ray Birefringence and Forbidden Reflections in Sodium Bromate


